Reduced Order Models Layers for digital twins

Task 4.4 Reduced Order Models Layers for digital twins

Partners involved

In this Task, ITAINNOVA has participated as Task leader adapting and developing the Twinkle library. Besides, SCHNEIDER and LIBRA have participated integrating the library in the final IoT platform. Finally, SUBTERRA has supported providing input to build the geotechnical Digital Twins.

The end-users involved in this task are the ones that will have a Real-Time Digital Twin at the end of the project, i.e. the end-users: MARINI, TAPO and TITANIA.

Objectives and outcomes

The main objective of this Task is to adapt the existing library Twinkle (developed by ITAINNOVA) to build the real-time digital twins. The library will be adapted for integration in the Dig_IT IoT platform as a layer to evaluate the resulting real-time digital twins, enabling the visualization of real-time risk maps in the DSS. These realtime digital twins will be the base for process control and quality assessment during operation.

This task plays a very important role within WP4, as the Reduced Order Models of geotechnical and fluid dynamic simulations developed in tasks 4.2 and 4.3 are built based on the library developed in this task.

What has been done in Task 4.4?

In this Task, the existing Twinkle library was adapted to generate real-time digital twins for geotechnical and fluid dynamics simulations. The resulting models stand for virtual sensors that can predict in real time the geotechnical or fluid-dynamics risks, mainly related to safety (slope stability, pollutants concentration in air and water). An exhaustive and automatized pre and post processing workflow was developed and implemented in the final tool according to each end-user requirements and needs. A user manual was generated in order to ensure the understanding regarding the use of this tool.

Finally, the exploitation of the generated ROMs is highly improved using a graphical user interface (GUI), which allows for fast evaluations using interactive sliders, real time tendencies evaluation with graphs, plotting of contour predictions etc. ITAINNOVA has a web GUI created in VOILA, which has been successfully adapted by LIBRA for platform implementation.

The deliverables related to this task are D4.4 ‘Python library and documentation for building digital twins from engineering simulation tools (v1.0)’, which was already submitted in M21, and D4.5 ‘Python library and documentation for building digital twins from engineering simulation tools (final)’, which is a final version of the previous deliverable and will be submitted at the end of the project.

Software and tools used

For this task, Python scripting was used in order to adapt and implement the Twinkle library into the IoT platform, to develop the post-processing capabilities according to each use-case, and to adapt the GUI.

GUI to display the real-time digital-twin for air quality and ventilation assessment in Kemi mine.
Image of the Kemi operaiting area under study, indicating the plane where the digital twin is being evaluated.
GUI to display the real-time digital-twin for geotechnical stability assessment of the tailing pond of La Parrilla mine.
Image of the La Parrilla area under study, indicating the plane where the digital twin is being evaluated.